Các dạng toán phương trình lượng giác, cách thức giải và bài xích tập từ bỏ cơ phiên bản đến nâng cao - toán lớp 11

Sau khi làm quen với các hàm lượng giác thì những dạng bài tập về phương trình lượng giác chính là nội dung tiếp sau mà các em đã học trong công tác toán lớp 11.

Bạn đang xem: Phương pháp giải bài tập toán 11


Vậy phương trình lượng giác có những dạng toán nào, cách thức giải ra sao? chúng ta cùng mày mò qua bài viết này, đồng thời áp dụng các cách thức giải này để triển khai các bài bác tập tự cơ bạn dạng đến nâng cao về phương trình lượng giác.

I. Triết lý về Phương trình lượng giác

1. Phương trình sinx = a. (1)

° |a| > 1: Phương trình (1) vô nghiệm

° |a| ≤ 1: gọi α là một trong những cung thỏa sinα = a, khi ấy phương trình (1) có các nghiệm là:

 x = α + k2π, ()

 và x = π - α + k2π, ()

- Nếu α vừa lòng điều kiện 

*
 và sinα = a thì ta viết α = arcsina. Lúc đó những nghiệm của phương trình (1) là:

 x = arcsina + k2π, ()

 và x = π - arcsina + k2π, ()

- Phương trình sinx = sinβ0 có các nghiệm là:

 x = β0 + k3600, ()

 và x = 1800 - β0 + k3600, ()

2. Phương trình cosx = a. (2)

° |a| > 1: Phương trình (2) vô nghiệm

° |a| ≤ 1: gọi α là 1 cung thỏa cosα = a, khi ấy phương trình (2) có những nghiệm là:

 x = ±α + k2π, ()

- Nếu α thỏa mãn điều khiếu nại 0 ≤ α ≤ π cùng cosα = a thì ta viết α = arccosa. Khi đó những nghiệm của phương trình (2) là:

 x = ±arccosa + k2π, ()

- Phương trình cosx = cosβ0 có các nghiệm là:

 x = ±β0 + k3600, ()

3. Phương trình tanx = a. (3)

- Tập xác định, hay đk của phương trình (3) là: 

*

- Nếu α thỏa mãn điều kiện

*

- Nếu α vừa lòng điều kiện

*

II. Các dạng toán về Phương trình lượng giác và cách thức giải

° Dạng 1: Giải phương trình lượng giác cơ bản

* Phương pháp

- Dùng các công thức nghiệm tương ứng với từng phương trình.

* ví dụ như 1 (Bài 1 trang 28 SGK Đại số với Giải tích 11): Giải các phương trình sau:

a) b)

b)

d)

*

* giải mã bài 1 trang 28 SGK Đại số với Giải tích 11:

a)  

*

 

*

b) 

*

 

*

 

*

c) 

*

 

*

 

*

 

*

d)

*
 
*

 

*

*
*
 
*

* ví dụ như 2: Giải những phương trình sau:

 a)

 b)

 c)

 d)

° Lời giải:

a) 

*

 

*
 
*
*

b) 

*

 

*
 
*
 
*

c) 

*

 

*
 
*

d) 

*

 

*
 
*

° Dạng 2: Giải một số trong những phương trình lượng giác chuyển được về dạng PT lượng giác cơ bản

* Phương pháp

- Dùng những công thức biến đổi để mang về phương trình lượng giác đã cho về phương trình cơ bản như Dạng 1.

* ví dụ 1: Giải những phương trình sau:

a) 

*

b) 

*

c) 

*

d) 

*

° Lời giải:

a)

*
 
*

 

*
*
 
*

+ Với 

*
 
*
 hoặc 
*

+ cùng với

*
 
*
 hoặc 
*

b) 

*
 
*

 

*
 
*

c)

*
 
*

 

*
 

 

*

 

*

 

*

d)

*
*

 

*
 
*

 

*
 hoặc 
*

 

*

* giữ ý: Bài toán trên áp dụng công thức:

 

*
*

 

*
*

* ví dụ 2: Giải các phương trình sau:

a) 

b)

° Lời giải:

a) 

 

*
*

 

*
 
*

 

*
 hoặc 
*
 với 
*

b)

 

*
 
*

 

*
 
*

 

*

 

*
 hoặc 
*
 với 
*

* lưu giữ ý: bài bác toán áp dụng công thức chuyển đổi tích thành tổng:

 

*

 

*

 

*

* ví dụ như 3: Giải các phương trình sau:

a)1 + 2cosx + cos2x = 0

b)cosx + cos2x + cos3x = 0

c)sinx + sin2x + sin3x + sin4x = 0

d)sin2x + sin22x = sin23x

° Lời giải:

a)

*

 

*
 
*

 

*
 
*

b)

*

 

*
 
*

 

*
*
 
*

c)

*

 

*

 

*

 

*

  hoặc 

*

  hoặc 

*

 

*
 hoặc 
*
 hoặc 
*

 

*
 hoặc 
*
 hoặc 
*
 với 
*

d)

*

 

*

 

*

 

*

 

*

 

*

 

*

 

*
 
*

 

*
 hoặc 
*
 hoặc 
*

* giữ ý: Bài toán trên có vận dụng công thức biến đổi tổng các kết quả và bí quyết nhân đôi:

 

*

 

*

 

*

 

*

 

*

 

*
 
*

° Dạng 3: Phương trình bậc nhất có một hàm số lượng giác

* Phương pháp

- Đưa về dạng phương trình cơ bản, ví dụ: 

* lấy một ví dụ 1: Giải các phương trình sau:

a) 

b) 

° Lời giải:

a)  

 

*
 
*

+ Với 

*

+ Với 

*

b)

 

*

 

*

 

*

 

*
 hoặc 
*

+ Với 

*
 
*
*

+ Với 

*
: vô nghiệm.

° Dạng 4: Phương trình bậc hai có một hàm số lượng giác

* Phương pháp

♦ Đặt ẩn phụ t, rồi giải phương trình bậc hai đối với t, ví dụ:

 + Giải phương trình: asin2x + bsinx + c = 0;

 + Đặt t=sinx (-1≤t≤1), ta có phương trình at2 + bt + c = 0.

* lưu ý: Khi đặt t=sinx (hoặc t=cosx) thì phải có điều kiện: -1≤t≤1

* ví dụ 1: Giải các phương trình sau

a) 

b) 

° Lời giải:

a) 

- Đặt 

*
 ta có: 2t2 - 3t + 1 = 0

 ⇔ t = 1 hoặc t = 1/2.

+ cùng với t = 1: sinx = 1 

*

+ với t=1/2: 

*
 

 

*
 hoặc 
*

b) 

 

*

*

+ Đặt 

*
 ta có: -4t2 + 4t + 3 = 0

 ⇔ t = 3/2 hoặc t = -1/2.

+ t = 3/2 >1 cần loại

*
*
 
*

* Chú ý: Đối cùng với phương trình dạng: asin2x + bsinx.cosx + c.cos2x = 0, (a,b,c≠0). Cách thức giải như sau:

 - Ta có: cosx = 0 không hẳn là nghiệm của phương trình bởi a≠0,

 Chia 2 vế cho cos2x, ta có:atan2x + btanx + c = 0 (được PT bậc 2 cùng với tanx)

 - giả dụ phương trình dạng: asin2x + bsinx.cosx + c.cos2x = d thì ta cố gắng d = d.sin2x + d.cos2x, với rút gọn mang về dạng trên.

° Dạng 5: Phương trình dạng: asinx + bcosx = c (a,b≠0).

* Phương pháp

◊ phương pháp 1: Chia hai vế phương trình cho , ta được:

 

 - Nếu  thì phương trình vô nghiệm

 - Nếu  thì đặt 

 (hoặc )

- Đưa PT về dạng:  (hoặc ).

 ◊ biện pháp 2: Sử dụng phương pháp sinx và cosx theo ;

 

 - Đưa PT về dạng phương trình bậc 2 so với t.

* lưu giữ ý: PT: asinx + bcosx = c, (a≠0,b≠0) bao gồm nghiệm khi c2 ≤ a2 + b2

• Dạng tổng quát của PT là:asin + bcos = c, (a≠0,b≠0).

* Ví dụ: Giải những phương trình sau:

a) 

b)

° Lời giải:

a) 

+ Ta có: 

*
 khi đó:

  

*

+ Đặt 

*
 ta có: cosφ.sinx + sinφ.cosx = 1.

 

*
 
*
 
*

b) 

 

*
 
*

 

*

 

*
 hoặc 
*

 

*
 hoặc 
*

* lưu lại ý: bài xích toán vận dụng công thức:

 

*
 

 

*

° Dạng 6: Phương trình đối xứng với sinx cùng cosx

 a(sinx + cosx) + bsinx.cosx + c = 0 (a,b≠0).

Xem thêm: Phép Hoán Dụ Là Gì? 4 Bài Tập Về Hoán Dụ Điển Hình Mà Bạn Cần Biết

* Phương pháp

- Đặt t = sinx + cosx, lúc đó:  thay vào phương trình ta được:

 bt2 + 2at + 2c - b = 0 (*)

- lưu lại ý: 

*
 nên điều kiện của t là: 

- cho nên vì vậy sau khi kiếm được nghiệm của PT (*) đề xuất kiểm tra (đối chiếu) lại điều kiện của t.

- Phương trình dạng: a(sinx - cosx) + bsinx.cosx + c = 0 không hẳn là PT dạng đối xứng tuy vậy cũng rất có thể giải bằng phương pháp tương tự:

 Đặt t = sinx - cosx;  

*

* Ví dụ: Giải các phương trình sau:

a) 2(sinx + cosx) - 4sinx.cosx - 1 = 0

b) sin2x - 12(sinx + cosx) + 12 = 0

° Lời giải:

a) 2(sinx + cosx) - 4sinx.cosx - 1 = 0

+ Đặt t = sinx + cosx, , khi đó:   thay vào phương trình ta được:

 

*
 ⇔ 2t2 - 2t - 1 = 0

  hoặc 

+ Với  

*

 

*
 
*

 

*

+ Tương tự, với 

*

 b) sin2x - 12(sinx + cosx) + 12 = 0

 

*

 

*

Đặt t = sinx + cosx, , khi đó:   thay vào phương trình ta được:

 

*
 
*
 
*

+ cùng với t=1 

*

 

*
*

 

*
 hoặc 
*

*
 hoặc 
*

+ Với 

*
: loại

III. Bài xích tập về những dạng toán Phương trình lượng giác

Bài 2 (trang 28 SGK Đại số và Giải tích 11): Với gần như giá trị như thế nào của x thì giá bán trị của các hàm số y = sin 3x và y = sin x bởi nhau?

° lời giải bài 2 trang 28 SGK Đại số cùng Giải tích 11:

- Ta có: 

*

 

*
 
*

 

*

- Vậy với 

*
thì 
*

* bài 3 (trang 28 SGK Đại số 11): Giải những phương trình sau:

 a) 

 b) 

*

 c) 

 d) 

° giải thuật bài 3 trang 28 SGK Đại số với Giải tích 11:

a) 

 

*
 
*

- Kết luận: PT tất cả nghiệm

*

b) cos3x = cos12º

⇔ 3x = ±12º + k.360º , k ∈ Z

⇔ x = ±4º + k.120º , k ∈ Z

- Kết luận: PT gồm nghiệm x = ±4º + k.120º , k ∈ Z

c) 

 

*
 

 

*
 hoặc 
*

 

*
 hoặc 
*

 

*
 hoặc 
*

d) 

 

*
 hoặc 
*

 

*
 hoặc 
*

 

*
 hoặc 
*

Bài 4 (trang 29 SGK Đại số cùng Giải tích 11): Giải phương trình 

° giải mã bài 3 trang 28 SGK Đại số cùng Giải tích 11:

- Điều kiện: sin2x≠1

- Ta có:  

*

 

*
 
*

 

*

+ Đến trên đây ta cần so sánh với điều kiện:

- Xét k lẻ tức là: k = 2n + 1

 

*

*
(thỏa điều kiện)

- Xét k chẵn tức là: k = 2n

*

*
 (không thỏa ĐK)

- Kết luận: Vậy PT tất cả họ nghiệm là 

*

Bài 1 (trang 36 SGK Đại số với Giải tích 11): Giải phương trình: sin2x – sinx = 0 

° giải thuật bài 1 trang 36 SGK Đại số với Giải tích 11:

- Ta có: sin2x – sinx = 0

 

*

 

*
 
*

 

*
 hoặc 
*

- Kết luận: PT tất cả tập nghiệm 

*

* bài xích 2 (trang 36 SGK Đại số cùng Giải tích 11): Giải các phương trình sau:

a) 2cos2x – 3cosx + 1 = 0

b) 2sin2x +

*
.sin4x = 0

° giải thuật bài 2 trang 36 SGK Đại số với Giải tích 11:

a) 2cos2x – 3cosx + 1 = 0 (1)

- Đặt t = cosx, điều kiện: –1 ≤ t ≤ 1, lúc ấy PT (1) trở thành: 2t2 – 3t + 1 = 0