Các dạng bài tập Phương trình lượng giác lựa chọn lọc, gồm lời giải

Với các dạng bài bác tập Phương trình lượng giác chọn lọc, có giải mã Toán lớp 11 tổng hợp các dạng bài tập, 100 bài tập trắc nghiệm có lời giải cụ thể với đầy đủ cách thức giải, lấy ví dụ minh họa sẽ giúp học sinh ôn tập, biết cách làm dạng bài xích tập Phương trình lượng giác từ đó đạt điểm cao trong bài xích thi môn Toán lớp 11.

Bạn đang xem: Cách giải các dạng bài tập lượng giác lớp 11

*

Cách giải phương trình lượng giác cơ bản

A. Phương thức giải & Ví dụ

- Phương trình sinx = a (1)

♦ |a| > 1: phương trình (1) vô nghiệm.

♦ |a| ≤ 1: call α là 1 cung vừa lòng sinα = a.

khi đó phương trình (1) có các nghiệm là

x = α + k2π, k ∈ Z

và x = π-α + k2π, k ∈ Z.

Nếu α thỏa mãn nhu cầu điều khiếu nại với sinα = a thì ta viết α = arcsin a.

Khi đó những nghiệm của phương trình (1) là

x = arcsina + k2π, k ∈ Z

và x = π - arcsina + k2π, k ∈ Z.

Các ngôi trường hợp đặc biệt:

*

- Phương trình cosx = a (2)

♦ |a| > 1: phương trình (2) vô nghiệm.

♦ |a| ≤ 1: gọi α là 1 trong những cung thỏa mãn cosα = a.

Khi kia phương trình (2) có các nghiệm là

x = α + k2π, k ∈ Z

và x = -α + k2π, k ∈ Z.

Nếu α thỏa mãn điều kiện và cosα = a thì ta viết α = arccos a.

Khi đó những nghiệm của phương trình (2) là

x = arccosa + k2π, k ∈ Z

cùng x = -arccosa + k2π, k ∈ Z.

Các ngôi trường hợp sệt biệt:

*

- Phương trình tanx = a (3)

Điều kiện:

*
Nếu α thỏa mãn nhu cầu điều kiện với tanα = a thì ta viết α = arctan a.

Khi đó những nghiệm của phương trình (3) là

x = arctana + kπ,k ∈ Z

- Phương trình cotx = a (4)

Điều kiện: x ≠ kπ, k ∈ Z.

Nếu α vừa lòng điều khiếu nại và cotα = a thì ta viết α = arccot a.

Khi đó những nghiệm của phương trình (4) là

x = arccota + kπ, k ∈ Z

Ví dụ minh họa

Bài 1: Giải các phương trình lượng giác sau:

a) sinx = sin(π/6) c) tanx – 1 = 0

b) 2cosx = 1. d) cotx = tan2x.

Hướng dẫn:

a) sin⁡x = sin⁡π/6

*

b)

*

c) tan⁡x=1⇔cos⁡x= π/4+kπ (k ∈ Z)

d) cot⁡x=tan⁡2x

*

Bài 2: Giải những phương trình lượng giác sau:

a) cos2 x - sin2x =0.

b) 2sin(2x – 40º) = √3

Hướng dẫn:

a) cos2x-sin2x=0 ⇔cos2x-2 sin⁡x cos⁡x=0

⇔ cos⁡x (cos⁡x - 2 sin⁡x )=0

*

b) 2 sin⁡(2x-40º )=√3

⇔ sin⁡(2x-40º )=√3/2

*

Bài 3: Giải các phương trình lượng giác sau:

*

Hướng dẫn:

a) sin⁡(2x+1)=cos⁡(3x+2)

*

b)

*

⇔ sin⁡x+1=1+4k

⇔ sin⁡x=4k (k ∈ Z)

Nếu |4k| > 1⇔|k| > 1/4; phương trình vô nghiệm

Nếu |4k| ≤ 1 cơ mà k nguyên ⇒ k = 0 .Khi đó:

⇔sin⁡x = 0 ⇔ x = mπ (m ∈ Z)

Cách giải Phương trình bậc hai với một hàm số lượng giác

A. Phương pháp giải & Ví dụ

Định nghĩa:

Phương trình bậc hai so với một hàm con số giác Là phương trình gồm dạng :

a.f2(x) + b.f(x) + c = 0

với f(x) = sinu(x) hoặc f(x) = cosu(x), tanu(x), cotu(x).

Xem thêm: Soạn Văn Mạch Lạc Trong Văn Bản, Soạn Bài Mạch Lạc Trong Văn Bản (Chi Tiết)

Cách giải:

Đặt t = f(x) ta có phương trình : at2 + bt +c = 0

Giải phương trình này ta tìm được t, tự đó tìm kiếm được x

Khi để t = sinu(x) hoặc t = cosu(x), ta có điều kiện: -1 ≤ t ≤ 1

Ví dụ minh họa

Bài 1: sin2x +2sinx - 3 = 0

*

Bài 2: cos2x – sinx + 2 = 0

*

B. Bài tập vận dụng

Bài 1: 1/(sin2 x)+tanx-1=0

Lời giải:

*

*

Bài 2: cosx – sin2x = 0

Lời giải:

*

Bài 3: cos2x + cosx – 2 = 0

Lời giải:

*

Cách giải Phương trình bậc nhất theo sinx với cosx

A. Phương pháp giải và Ví dụ

Xét phương trình asinx + bcosx = c (1) với a, b là các số thực không giống 0.