Ôn tập lại kim chỉ nan và hướng dẫn biện pháp giải những dạng toán về hệ thức lượng trong tam giác sinh hoạt lớp 10 qua những ví dụ có lời giải chi tiết.

Bạn đang xem: Các dạng toán lượng giác lớp 10

Chúng ta đề nghị nhớ những công thức với định lý trước lúc áp dụng vào giải bài bác tập.


A. TÓM TẮT LÝ THUYẾT

1. Định lí côsin

Trong tam giác $ABC$ cùng với $BC = a$, $AC = b$ với $AB = c.$ Ta có: $a^2 = b^2 + c^2 – 2bc.cos A.$ $b^2 = c^2 + a^2 – 2ca.cos B.$ $c^2 = a^2 + b^2 – 2ab.cos C.$

*
*
*
*
*
*
*
*

Áp dụng cách làm đường trung tuyến đường với tam giác $ABC$ với $ADC$ ta có: $AB^2 + BC^2 = 2BE^2 + fracAC^22$ $(1).$ $CD^2 + DA^2 = 2DE^2 + fracAC^22$ $(2).$ từ $(1)$ và $(2)$ suy ra: $AB^2 + BC^2 + CD^2 + DA^2$ $ = 2left( BE^2 + DE^2 ight) + AC^2.$ còn mặt khác $EF$ là đường trung con đường tam giác $BDF$ nên: $BE^2 + DE^2 = 2EF^2 + fracBD^22.$ Suy ra $AB^2 + BC^2 + CD^2 + DA^2$ $ = AC^2 + BD^2 + 4EF^2.$

3. BÀI TẬP LUYỆN TẬP bài 1: minh chứng rằng trong phần đông tam giác $ABC$ ta có: a) $a = b.cos C + c.cos B.$ b) $sin A = sin Bcos C + sin Ccos B.$ c) $h_a = 2Rsin Bsin C.$ d) $m_a^2 + m_b^2 + m_c^2$ $ = frac34left( a^2 + b^2 + c^2 ight).$ e) $S_Delta ABC = frac12sqrt AB^2.AC^2 – (overrightarrow AB .overrightarrow AC )^2 .$

a) Áp dụng định lí côsin ta có: $VP = b.fraca^2 + b^2 – c^22ab$ $ + c.fracc^2 + a^2 – b^22ca$ $ = fraca^2 + b^2 – c^2 + c^2 + a^2 – b^22a$ $ = a = VT.$ b) $sin A = sin Bcos C + sin Ccos B$ $ Leftrightarrow fraca2R = fracb2R.cos C + fracc2R.cos B$ $ Leftrightarrow a = bcos C + ccos B$ (câu a). C) $h_a = 2Rsin Bsin C$ $ Leftrightarrow frac2Sa = 2Rfracb2Rsin C$ $ Leftrightarrow S = frac12absin C$ (đúng). D) Áp dụng cách làm đường trung tuyến. E) $sqrt AB^2.AC^2 – (overrightarrow AB. overrightarrow AC )^2 $ $ = AB.ACsqrt 1 – cos ^2A $ $ = AB.AC.sin A.$ Từ kia suy ra điều nên chứng minh.

Bài 2: mang lại tam giác $ABC.$ chứng minh rằng: a) $b + c = 2a$ $ Leftrightarrow frac2h_a = frac1h_b + frac1h_c.$ b) Góc $A$ vuông $ Leftrightarrow m_b^2 + m_c^2 = 5m_a^2.$

a) $b + c = 2a$ $ Leftrightarrow frac2Sh_b + frac2Sh_c = 2.frac2Sh_a$ $ Leftrightarrow frac1h_b + frac1h_c = frac2h_a.$ b) $m_b^2 + m_c^2 = 5m_a^2$ $ Leftrightarrow frac2left( a^2 + c^2 ight) – b^24$ $ + frac2left( a^2 + b^2 ight) – c^24$ $ = 5.frac2left( b^2 + c^2 ight) – a^24.$ $ Leftrightarrow b^2 + c^2 = a^2$ $ Leftrightarrow $ góc $A$ vuông.

Bài 3: cho tam giác $ABC$ thỏa mãn nhu cầu $a^4 = b^4 + c^4.$ minh chứng rằng: a) Tam giác $ABC$ nhọn. B) $2sin ^2A = an B an C.$

a) thường thấy $a > b$, $a > c$ $ Rightarrow $ góc $A$ là béo nhất. Cùng $a^4 = b^4 + c^4 ngoài ra theo định lí côsin ta có: $cos A = fracb^2 + c^2 – a^22bc$ $ Rightarrow cos A > 0.$ cho nên $widehat A b) $2sin ^2A = an B an C$ $ Leftrightarrow 2sin ^2Acos Bcos C = sin Bsin C.$ $ Leftrightarrow 2left( fraca2R ight)^2.fraca^2 + c^2 – b^22ac.fraca^2 + b^2 – c^22ab$ $ = fracb2R.fracc2R$ $ Leftrightarrow a^4 = b^4 + c^4.$

Bài 4: gọi $S$ là diện tích s tam giác $ABC.$ chứng tỏ rằng: a) $S = 2R^2sin Asin Bsin C.$ b) $S = Rr(sin A + sin B + sin C).$

a) Ta tất cả $S = fracabc4R$ $ = frac2Rsin A.2Rsin B.2Rsin C4R$ $ = 2R^2sin Asin Bsin C.$ b) $S = pr$ $ = fraca + b + c2r$ $ = frac2Rsin A + 2Rsin B + 2Rsin C2r.$

Bài 5: mang lại tứ giác lồi $ABCD$, điện thoại tư vấn $alpha $ là góc hợp bởi hai đường chéo $AC$ với $BD.$ chứng tỏ diện tích $S$ của tứ giác cho do công thức: $S = frac12AC.BD.sin alpha .$

Gọi $I$ là giao điểm hai tuyến phố chéo. Lúc đó: $S = S_ABI + S_BC1 + S_CDI + S_DAI.$ $ = frac12AI.BI.sin widehat AIB$ $ + frac12BI.CI.sin widehat BIC$ $ + frac12CI.DI.sin widehat CID$ $ + frac12DI.AI.sin widehat DIA.$ Ta có những góc $widehat AIB$, $widehat BIC$, $widehat CID$ với $widehat DIA$ đôi một bù nhau suy ra: $sin widehat AIB = sin widehat BIC$ $ = sin widehat CID = sin widehat DIA$ $ = sin alpha .$ do đó $S = frac12BI.AC.sin alpha $ $ + frac12ID.AC.sin alpha $ $ = frac12AC.BD.sin alpha .$

DẠNG TOÁN 4: NHẬN DẠNG TAM GIÁC

1. PHƯƠNG PHÁP GIẢI

Sử dụng định lí côsin, định lí sin, phương pháp đường trung tuyến, bí quyết tính diện tích tam giác để chuyển đổi giả thiết về hệ thức liên hệ cạnh (hoặc góc) từ kia suy ra dạng của tam giác.

2. CÁC VÍ DỤ

Ví dụ 1: đến tam giác $ABC$ vừa ý $sin C = 2sin Bcos A.$ chứng tỏ rằng tam giác $ABC$ cân.

Áp dụng định lí côsin với sin ta có: $sin C = 2sin Bcos A$ $ Leftrightarrow fracc2R = 2.fracb2R.fracb^2 + c^2 – a^22bc.$ Suy ra tam giác $ABC$ cân tại đỉnh $C.$

Ví dụ 2: cho tam giác $ABC$ hợp ý $sin A = fracsin B + sin Ccos B + cos C.$ minh chứng rằng tam giác $ABC$ vuông.

Xem thêm: Phòng Khám Bác Sĩ Đinh Mạnh Hùng Phòng Khám 125 Thái Thịnh Mới Nhất 2022

Ta có: $sin A = fracsin B + sin Ccos B + cos C$ $ Leftrightarrow sin A(cos B + cos C)$ $ = sin B + sin C.$ $ Leftrightarrow fraca2Rleft( fracc^2 + a^2 – b^22ca + fraca^2 + b^2 – c^22ab ight)$ $ = fracb + c2R.$ $ Leftrightarrow bleft( c^2 + a^2 – b^2 ight) + cleft( a^2 + b^2 – c^2 ight)$ $ = 2b^2c + 2c^2b.$ $ Leftrightarrow b^3 + c^3 + b^2c + bc^2 – a^2b – a^2c = 0$ $ Leftrightarrow (b + c)left( b^2 + c^2 ight) – a^2(b + c) = 0.$ $b^2 + c^2 = a^2$ $ Leftrightarrow Delta ABC$ vuông trên $A.$

Ví dụ 3: thừa nhận dạng tam giác $ABC$ trong các trường hợp sau: a) $asin A + bsin B + csin C$ $ = h_a + h_b + h_c.$ b) $fraccos ^2A + cos ^2Bsin ^2A + sin ^2B$ $ = frac12left( cot ^2A + cot ^2B ight).$

a) Áp dụng công thức diện tích ta bao gồm $S = frac12bcsin A = frac12ah_a$ suy ra: $asin A + bsin B + csin C$ $ = h_a + h_b + h_c$ $ Leftrightarrow a.frac2Sbc + b.frac2Sca + c.frac2Sab$ $ = frac2Sa + frac2Sb + frac2Sc.$ $ Leftrightarrow a^2 + b^2 + c^2 = ab + bc + ca$ $ Leftrightarrow (a – b)^2 + (b – c)^2 + (c – a)^2 = 0.$ $ Leftrightarrow a = b = c.$ Vậy tam giác $ABC$ đều. B) Ta có: $fraccos ^2A + cos ^2Bsin ^2A + sin ^2B$ $ = frac12left( cot ^2A + cot ^2B ight).$ $ Leftrightarrow fraccos ^2A + cos ^2B + sin ^2A + sin ^2Bsin ^2A + sin ^2B$ $ = frac12left( cot ^2A + 1 + cot ^2B + 1 ight).$ $ Leftrightarrow frac2sin ^2A + sin ^2B$ $ = frac12left( frac1sin ^2A + frac1sin ^2B ight)$ $ Leftrightarrow left( sin ^2A + sin ^2B ight)^2$ $ = 4sin ^2Asin ^2B.$ $ Leftrightarrow sin ^2A = sin ^2B$ $ Leftrightarrow left( fraca2R ight)^2 = left( fracb2R ight)^2$ $ Leftrightarrow a = b$ $ Leftrightarrow Delta ABC$ cân tại $C.$

3. BÀI TẬP LUYỆN TẬP bài xích 1: cho tam giác $ABC.$ chứng minh tam giác $ABC$ cân nặng nếu $h_a = csin A.$

Sử dụng bí quyết $S = frac12ah_a = frac12bcsin A$ ta có: $h_a = csin A$$ Leftrightarrow bh_a = ah_a$ $ Leftrightarrow a = b$ suy ra tam giác $ABC$ cân nặng tại $C.$

Bài 2: đến tam giác $ABC.$ chứng tỏ tam giác $ABC$ cân nếu $4m_a^2 = b(b + 4ccos A).$

Sử dụng công thức đường trung con đường và định lí sin. $4m_a^2 = b(b + 4ccos A)$ $ Leftrightarrow 4frac2left( b^2 + c^2 ight) – a^24$ $ = bleft( b + 4c.fracb^2 + c^2 – a^22bc ight)$ $ Leftrightarrow a = b.$

Bài 3: chứng minh rằng tam giác $ABC$ rất nhiều khi và chỉ còn khi: $a^2 + b^2 + c^2 = 36r^2.$

Ta có: $r^2 = fracS^2p^2$ $ = frac(p – a)(p – b)(p – c)p.$ Theo Cauchy: $(p – a)(p – b)(p – c)$ $ le left( frac3p – a – b – c3 ight)^3$ $ = left( fracp3 ight)^3.$ Suy ra $36r^2 le frac4p^33p$ $ = frac(a + b + c)^23$ $ le a^2 + b^2 + c^2.$ vệt bằng xẩy ra khi và chỉ khi $a = b = c$ hay tam giác $ABC$ đều.

Bài 4: cho tam giác $ABC.$ kiếm tìm góc $A$ trong tam giác biết những cạnh $a$, $b$, $c$ toại nguyện hệ thức: $bleft( b^2 – a^2 ight) = cleft( c^2 – a^2 ight)$ $(b e c).$

$bleft( b^2 – a^2 ight) = cleft( c^2 – a^2 ight)$ $ Leftrightarrow b^3 – c^3 = a^2(b – c)$ $ Leftrightarrow b^2 + bc + c^2 = a^2.$ Theo định lí côsin thì $a^2 = b^2 + c^2 – 2bccos A$ $ Leftrightarrow cos A = frac12$ $ Leftrightarrow widehat A = 60^0.$